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INTRODUCTION 

In report on Deliverable 3.1, we highlighted that quantum technologies in space offer a vast 
panorama of uses ranging from fundamental-physics tests to technological applications. 
Thereby, quantum technologies in space can advance our knowledge in fundamental 
physics, by bridging the gap between relativistic physics and quantum physics. They can be 
enabling technologies, like deep space communication, allowing mankind to explore the 
solar system and beyond. In addition, they are attractive for commercial purposes, with 
satellite-based quantum key distribution and sensing with atom interferometry being a 
prominent example. 
Here, we shine light on different examples of missions serving these purposes. These are 
proof-of-principle experiments in micro-gravity environments and implementations of the 
ideas reviewed in D3.1. We classify these experiments again corresponding to the physical 
platforms of cold atoms, photons, and optomechanical systems, which they are based on. 
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IMPLEMENTATION 

1. Atomic Systems In Space  
 
a. Atomic clocks in space  
 
An implementation of quantum technologies in space is atom-based clocks. These are atomic 
and optical clocks, which provide increased accuracy and precision as frequency and time 
references and are nowadays the reference in modern time keeping systems. In 
conventional systems, primarily radio frequency-based references have been employed. As 
such, the current Galileo system is based on different such references. Optical systems, 
based on atomic transitions or fixed lengths, promise higher accuracy and precision 
[115,116]. 
Atomic clocks with hot atoms are widespread and offer compact and robust setups. As the 
system depends on the width of atomic lines, their accuracy and precision can be improved 
by reducing internal and external temperatures. Another improvement to atomic clocks is 
based on atom fountains, which increase the interrogation time for the atoms. Optical 
clocks, which are atom-based clocks with transition energies at optical frequencies, promise 
even higher precision. Hence, different concepts of generating a stable frequency reference 
exist [115,116]. Some optical systems exploit atomic, e.g. Ref. [117], or molecular transitions 
[118,119], while others rely on fixed distances [120]. Ground-based systems can make use 
of controlled environments, such as operating at cryogenic temperatures, or large volumes 
to generate the desired frequency stability. In space-based systems budgets are limited and 
the system needs to operate reliably without interference [121,122,123]. Consequently, 
several missions are deployed to test concepts. While atomic clocks might have more 
stringent demands in space, the microgravity environment can also improve performances. 
In addition to dedicated scientific missions, commercial systems have been used to measure 
fundamental principles.  
The report on Deliverable 3.3 will be dedicated to outline a couple of those atomic clock 
missions in more detail to analyze the realistic time schedule for outstanding challenges.  
 
Scientific Experiments:  Scientific missions revolve around measuring the gravitational 
redshift caused by Earth and Sun, and probing special relativity. In addition, these systems 
aim at enabling next generation gravity missions and future global navigation satellite 
systems. Furthermore, clocks are necessary performing high precision experiments in space, 
such as the gravitational waves antenna LISA. These aims and goals are similar for all the 
scientific missions surrounding optical frequency references, either ongoing or planned, and 
that are reported in the following [122]. 
  
Sounding Rocket Missions: A first step towards optical clock operation in space is by sounding 
rocket missions. Here, three of the major developments in recent years are listed: 
 
• KALEXUS (Kalium Laser-Experimente unter Schwerelosigkeit; English translation: 

Potassium Laser Experiment under Microgravity): Within the KALEXUS mission, two 
extended cavity diode lasers alongside an optical preparation stage were launched on a 
sounding rocket mission. With this mission the technological readiness of the Potassium 
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laser system, automatic frequency stabilization of the lasers, and the switching between 
redundant systems during flight was demonstrated in 2016 [123]. 
 

• FOKUS (Faserlaserbasierter Optischer Kammgenerator unter Schwerelosigkeit; English 
translation: Optical Frequency Comb Metrology Under Microgravity): Within FOKUS, the 
technological readiness of optical frequency combs for deployment in space was 
demonstrated. For this purpose, a frequency comb alongside a diode laser and an optical 
preparation stage were mounted to a sounding rocked and launched into space in 2015 
[124]. 
 

• JOKARUS (Jod-Kammresonator unter Schwerelosigkeit; English translation: Iodine, 
Comb, and Resonator Under Microgravity) Within the JOKARUS mission, a Iodine 
frequency reference, an optical frequency comb, and the optical and electrical 
preparation stages were launched to space on board of a sounding rocket at the end of 
2017. This campaign served to demonstrate the miniaturization and deployment of key 
technologies in space [119,121] 

 
Space-based Platforms: A prominent example of using frequency references in orbit for 
fundamental research is the experiment on the Galileo satellites executed in 2014: 
 
• Galileo Satellites: In August 2014, two Galileo [125] satellites were launched, and - due 

to an error during launch - orbited Earth on eccentric orbits. Such an eccentricity allowed 
for measurements of the gravitational redshift similar to the measurements of Gravity 
Probe A [126]. 

 
Following the success of measuring the weak equivalence principle with the MICROSCOPE 
mission [127] and the need for more precise optical frequency references in space, different 
experiments and missions have been devised, which we describe briefly in the following.  
 
Flown Missions: 
 
• CACES  (Cold Atomic Clock Experiment in Space): This is a mission started in 2011 under 

the Chinese manned space program. It sets out to test laser cooling and manipulation of 
atoms in orbit. It is based on laser-cooled Rubidium-87 atoms in an atomic fountain for 
stabilization of frequencies to a level of 2x10-16 on ground. The system was launched 
into space aboard the Chinese space laboratory Tiangong-2 in September 2016. It has 
proven long-term in-orbit operation of cold-atom clocks under various environmental 
effects such as varying gravity levels, magnetic fields and radiation [128]. 
 

• DSAC  (Deep Space Atomic Clock): NASA founded DSAC is developed as a step towards 
independent spacecraft navigation in deep space as opposed to relying on 
communication to the ground. It houses a Mercury ion atomic clock and it has been 
launched in June 2019 [129,130]. 

 
Commercial Missions: Currently, the main commercial application of atomic clocks is in the 
Global Navigation Satellite Systems (GNSS). Starting with the initially military American 
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Global Positioning System (GPS) in 1978, four GNSS and several Regional Navigation Satellite 
Systems have been established. The latest GNSS is the European Galileo system. Each current 
generation Galileo Satellite contains two passive Hydrogen MASER atomic clocks and two 
secondary Rubidium atomic clocks. The use of other atomic clocks on future Galileo 
generations is currently under evaluation. Nowadays, the precise position and timing data 
provided by GNSS is indispensable for a modern economy and plays a key role for future 
developments such as autonomous vehicles. Several future commercial applications of 
quantum technologies in space are being studied. These include the use of atomic clocks as 
reference for deep space navigation and as sensors for the measurement of Earth's 
gravitational field. 
 
b. Atom Interferometers 
 
Cold atoms are one of the physical systems utilized to implement quantum technologies in 
space. They offer a well-controlled environment where employing interferometric effects 
leads to unprecedented precision in sensing applications. Low-gravity environments elevate 
the precision of these systems even further, mainly due to the increasing free fall times. In 
addition, ultra-cold atomic condensates can be considered as macroscopic systems showing 
quantum effects. Thus, in combination with environments where relativistic effects become 
relevant, they present an attractive playground for testing fundamental physics. 
Cold atom experiments already have taken a long path from the laboratory environment 
today even into space. Therefore, in the following we list projects and missions, which are 
important milestones in enabling cold atom experiments in space. The ability to operate in 
harsh environments, like drop towers, ships, airplanes or sounding rockets, requires cold 
atom experiments to be robust and autonomous. Hence, it is an important indicator for the 
technological maturity of cold atom systems and paves the way for commercial utilization in 
e.g. Earth observation and in reaching unprecedented parameter regimes for fundamental 
physics tests. 
 
Ground-based microgravity projects: Weightlessness on ground can be achieved for a 
payload by bringing it into free fall and, by this, compensating for the gravitational pull. For 
this purpose, drop towers have been erected from which prominently the Drop-Tower 
Bremen at the Center of Applied Space Technology and Microgravity (ZARM) of the 
University of Bremen was chosen as microgravity platform for BEC experiments in 
weightlessness, as it provides good accessibility and superior quality of microgravity 
compared to other ground-based platforms. At ZARM, an experiment's capsule can either be 
dropped for 110 m inside the evacuated vacuum-tube of the drop tower to generate 4.72 s 
of microgravity time, or can be launched with a piston-catapult to almost double the 
microgravity time, ~9.3 s. In future, the GraviTower Bremen (GTB Pro) will become the third 
generation of drop towers at the ZARM, complementing the Bremen drop tower. The GTB 
Pro is designed to fit the same proven experiment designs and dimensions as used in the 
Bremen Drop Tower making both facilities fully compatible. The initial acceleration and the 
transition into microgravity are made very smooth by following a sine function limited to 5 
g. With a repetition time of just three minutes each flight offers 2.5 s of microgravity - fully 
automated all day. Experiment preparation, automation, tests and flights are carried out in 
teamwork with the engineers of ZARM and in collaboration with the Bremen Drop Tower. 
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The interested reader is referred to [131,132]. 
 
On a smaller scale, a zero-g simulator, was designed and built by the French company 
Symétrie and is operated at LP2N, Bordeaux. This simulator works by moving a platform, on 
which the experimental apparatus rests, in a way that mimics the trajectory of an object in 
free fall, launched vertically, i.e. a parabola. The platform moves vertically between two 
granite columns thanks to two carriages with air bearings for a frictionless motion. Linear 
motors mounted on the sides of the columns are responsible for the accelerations of the 
moving parts necessary to perform parabolic trajectories. The 0-g simulator can provide up 
to half a second of weightlessness on every trajectory and, thanks to its very high repetition 
rate (1 parabola every 12s), gives access to a very long accumulated duration of 0-g.  
 
Another very important large-scale facility renders the Einstein Elevator at HITec (Hannover 
Institute of Technology). This large-scale research device is a next-generation drop tower 
facility with a total height of 40m and therefore allows for four seconds of microgravity with 
residual acceleration of 10-6 g. Payloads with up to 1000 kg and a size of diameter of 1.7 m 
and height of 2 m can be operated with a repetition rate of 300 flights per day, thanks to the 
innovative electromagnetic linear motor drive unit. This is a great improvement in 
comparison to 3-4 drops possible with the ZARM drop tower. This motor drive additionally 
allows for hyper- or hypogravity to generate conditions as they prevail on other celestial 
bodies, like Moon or Mars. The first test operation started in 2019 [133] and the interested 
reader is referred to [134-136]. 
 
• QUANTUS (QUANTengase Unter Schwerelosigkeit , English translation: Quantum Gases 

under Microgravity): The DLR (Deutsches Zentrum für Luft- und Raumfahrt) funded 
QUANTUS-Project started in 2004 and aims at developing the necessary methods for 
space-borne microgravity platforms like sounding rockets, experiments on the ISS and 
on dedicated satellites. Within QUANTUS, the technology and the physical 
understanding of these complex experimental apparatuses are developed and 
preliminary studies for space-borne missions are performed. Using the first-generation 
payload QUANTUS-1, this capability has been used for the demonstration of the first 
BEC in microgravity in 2007 [137] and the first interferometry experiments with freely 
falling BECs [138]. Sine 2014, the second-generation apparatus 1350 QUANTUS-2 is 
operational at ZARM, featuring a novel compact high-flux BEC source [44]. This 
apparatus is more compact, so it allows for using the catapult mode of the Bremen Drop-
Tower at ZARM [139] to double the time in microgravity and to increase the overall data 
rate. Additionally, it is designed to be able to use a second species, potassium. In recent 
years, using both apparatuses, novel interferometric schemes [140,141], large-
momentum beam splitters [142] and 3D magnetic delta-kick collimation techniques in 
microgravity were developed to reduce the kinetic energy of the atomic ensemble down 
to 38 pK. These developments have enabled the MAIUS and BECCAL missions. More 
details are in [143,144-150]. 
 

• PRIMUS  (PRäzisionsInterferometrie mit Materiewellen Unter Schwerelosigkeit, English 
translation: Precision Interferometry with Matter Waves in Zero Gravity): In addition to 
the magnetic trap based efforts of the QUANTUS project to utilize ultra-cold atom 
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technologies in microgravity, since 2009 the potential of optical traps is investigated in 
the PRIMUS project. This project initially focused on a test of the weak equivalence 
principle, leading to outstanding ground-based results [151,152]. Lately, PRIMUS 
widened its spectrum of interests to more general questions concerning cooling and 
phase transitions. Within PRIMUS, a compact experimental setup was realized [153] to 
apply optical trapping in the drop tower of Bremen. Further milestones where the 
implementation of a single beam optical dipole trap in microgravity, successful 
evaporative cooling in weightlessness, and the advancement to a crossed beam 
configuration by actively stabilizing the trapping beam's pointing. In principle the 
absence of gravity should increase the dimension of evaporation, because the trap is 
not tilted anymore [154]. Previous studies did not observe this effect for magnetically 
tilted traps [155]. The nonexistence was confirmed in PRIMUS for evaporative cooling in 
microgravity and could be explained by the anharmonicity of the traps [156]. The 
interested reader is referred to [151,152,153,156]. 
 

• I.C.E.  (Interferometrie atomique a sources Coherentes pour l'Espace, English 
translation: Coherent Source Atomic Interferometry for Space): Since 2018, the I.C.E. 
experiment is able to perform experiments in the laboratory thanks to the unique, 
purpose made Einstein elevator on which the experimental apparatus is installed. This 
device allows to produce Bose-Einstein condensates with forty thousand rubidium-87 
atoms at a temperature of 35 nK in weightlessness [157].  

 
Air/Marine-borne cold atoms projects: One way to achieve weightlessness is by parabolic 
flights in an aircraft by alternating upward and downward arcs interspersed with level flight. 
In April 2015, Novespace began operating its third aircraft, the Airbus A310 Zero-G to provide 
a microgravity environment for scientists to conduct research without going into space. Not 
directly benefiting from weightlessness, but still relevant for research on cold atoms in space, 
is one project, where cold atom interferometers are operated during flight or on a ship. 
Therefore, it is included in this list. 
 
• I.C.E.  (Interf_erometrie atomique _a sources Coh_erentes pour l'Espace, English 

translation: Coherent Source Atomic Interferometry for Space): The CNES-funded I.C.E. 
operated an atom interferometer for inertial sensing in reduced gravity on board the 
NOVESPACE Zero-G plane. During a 20 seconds-lasting ballistic parabolic flight residual 
acceleration on the order of 10-2 g are achieved. Within I.C.E., Ramsey fringes have been 
obtained in 2008 operating an atom interferometer using a series of two Raman 
transitions within cold Rubidium-87 atoms [159]. In 2011, the first airborne operation of 
a horizontally measuring high-resolution cold-atom inertial sensor, both at 1 g and in 
reduced gravity has been reported [160]. This measurement technique has been then 
advanced to a vertical mode and measurements of the acceleration along the vertical 
and horizontal axis with one-shot sensitivities of 2.3x10-4 g have been achieved [161]. 
The measured loss of contrast was attributed to the high level of vibrations on-board 
the aircraft and the large rotation rates during a parabolic flight. A first on-board 
operation of simultaneous Rubidium-87 and Potassium-39 interferometers in the 
weightless environment was demonstrated in 2016. In this parabola campaign, I.C.E. 
demonstrated its capability of operating a dual-quantum sensor and with this measured 
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the Eötvös parameter with systematic-limited uncertainty of 3.0x10-4 in reduced gravity 
[162]. This constituted the _rst test of the equivalence principle in a free-falling vehicle 
with quantum sensors. During the last years, I.C.E. got upgraded and is now operated at 
a 3 m high 0 g-simulator built by the French company Symétrie, which gives access to 
microgravity in the laboratory. More details elsewhere [159,160,161,163]. 
 

• GIRAFE (Gravimètre Intérferométrique de Recherche à Atomes Froids, Embarquable ; 
English translation: Shipborne cold atom research interferometric gravimeter): In the 
scope of a funding program of the French DGA and CNES, since 2006 the company 
ONERA designed and built an absolute marine gravimeter based on atom interferometry 
called GIRAFE. GIRAFE was tested multiple times (in October 2015 and January 2016) at 
sea on an oceanographic survey vessel and demonstrated a superior performance 
compared to classical technology [164]. Subsequently, the GIRAFE instrument was 
adapted for airborne measurements for surveying areas where gravity is poorly resolved 
by ground or satellite measurements, as for example in coastal and mountainous areas. 
In April 2017, in an airborne campaign above Iceland, GIRAFE was compared with other 
conventional airborne gravimeter and inertial sensors and show differences with a 
standard deviation ranging from 3.3 to 6.2 mGal and a mean value ranging from 0.7 
mGal to 1.9 mGal [165].  

 
Space-based cold atoms projects: Since 2017, cold atom research reached space. Here, the 
microgravity platforms in use are parabolic sounding rocket missions and the International 
Space Station (ISS). A next interesting platform under investigation for cold atoms research 
can be CubeSats. 
 
• MAIUS (MAteriewellen-Interferometer Unter Schwerelosigkeit, English translation: 

Matterwave Interferometry under Microgravity): The DLR funded MAIUS missions are 
the continuation of the aforementioned QUANTUS project. Their aim is to bridge the 
gap between laboratory or drop tower systems and future orbital missions by 
implementing cold atoms, BECs and atom interferometry on sounding rockets. In total, 
three sounding rocket missions are planned with the first, MAIUS-1, successfully 
launched in 2017 [166]. This constitutes a major advancement over the aforementioned 
projects, as it is not only the first setup to undergo environmental qualification but also 
operated autonomously in the harsh environment of an unmanned sub-orbital 
spacecraft. During the maiden flight in 2017 the first Bose-Einstein-condensate in space 
has been demonstrated and its collective dynamics were analyzed [166]. Additionally, 
important manipulation techniques, like internal state preparation, have been 
performed and autonomously optimized during the parabolic flight. Finally, first atom 
interferometry experiments in space have been conducted [158]. 
 

• CAL (Cold Atom Laboratory): The NASA-funded Cold Atom Laboratory (CAL) was 
developed by NASA's Jet Propulsion Laboratory and utilizes a compact atom chip-based 
system to create ultracold mixtures and degenerate samples of Rubidium-87, 
Potassium-39, and Potassium-41. It was launched to the ISS in 2018 and operates as a 
multi-user facility to provide the first persistent quantum gas platform in space for an 
international group of investigators with broad applications in fundamental physics and 
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inertial sensing. Up to date, experiments transferring Rubidium-87 Bose-Einstein 
Condensates in ultra-shallow traps are realized based on adiabatic decompression 
ramps. Fast and perturbation-free transport with a micrometer-level control of the 
atomic positions is realized based on shortcut-to-adiabaticity protocols [167]. Moreover, 
a space atom laser [168] and a radio frequency bubble experiment are conducted. 
Finally, delta-kick collimation drastically reducing the free expansion rate of the atomic 
clouds has been performed on the ISS. At the beginning of 2020, the new science module 
SM3 has been installed on the ISS, adding the possibility to perform atom interferometry 
experiments with CAL. The interested reader is referred to [169,170]. 

 
 

2. Photonics Systems In Space 

 
Transmission of quantum signals over long distances has been demonstrated through a 
series of satellite-based experiments and feasibility studies. The first proposals to implement 
satellites for this application emerged in the 1990s [171]. Since this initial proposal, 
numerous feasibility studies and demonstrations of satellites QKD have been made. They 
include free space QKD over high altitude ranges [171], feasibility of quantum 
communications in space [171,173], and a record-breaking inter-island key exchange over 
144 km [174,175]. The feasibility of space links was realized through experiments that 
exchanged single photons from a low Earth orbit (LEO) satellite to ground by exploiting retro-
reflectors aboard the spacecraft [176,177]. These experiments recorded small quantum bit 
error rate, which provided a concrete proof for satellite-based quantum communications. 
The transmission of quantum photonic signals has also been increased through use of 
Medium Earth orbit (MEO) satellites or higher orbits, up to the current single-photon 
exchange limit of 20,000 km [178,179].  
 
Recently, the QUESS experiment involving the Chinese LEO satellite MICIUS became the first 
space-based quantum communication mission to be launched and has made further 
developments [180,181]. It has demonstrated entanglement distribution to two ground 
stations separated by 1200km [181], ground-to-satellite quantum teleportation over 
distances of up to 1400 km [182], and the realization of a hybrid quantum communication 
network with a total quantum communication distance of 4600km [183]. 
 
Despite these demonstrations, establishing long-term reliable ground and satellite links 
remains the principle challenge in satellite QKD. A notable development in space systems is 
the rise of in-orbit demonstrations with small satellites and CubeSats for rapid and less-costly 
space systems developments. This increase is partly driven by miniaturization and increasing 
robustness of quantum components. In addition, constellations of small satellites offer the 
possibility of a cost-effective approach to improving coverage and ground-satellite link 
reliability compared to traditional satellites. CubeSat missions in 2015 [184] and 2019 [185] 
have performed in-orbit demonstrations of miniaturized quantum photon pair sources.  
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Figure 1: Timeline of key milestones in proof-of-principle field demonstration and feasibility studies towards the 
developments of satellite-based QKD. Notice that, the increase in the number of missions involving CubeSats 
reflects their growing importance in satellite-based global quantum communications. Image taken from [186] 
and references therein. 
 
 
A timeline of missions that have demonstrated key milestones or feasibility studies towards 
global satellite-based QKD is provided in Fig.1 [186]. This includes recently proposed mission 
that aim to integrate space and terrestrial segments to step closer to a globally quantum 
networking. Further dedicated reviews on space quantum communication missions can be 
found in Refs. [187,188] and Ref. [186] for a general overview of the field. 

 

3. Large-Mass Systems In Space 

 
Following the first motional ground state cooling of a clamped optomechanical resonator in 
2010 [189], the technological advances in laser cooling and trapping have allowed larger 
objects to enter the quantum regime. Many clamped systems have reached close to, or have 
entered, the quantum regime [190], c.f. Fig.2. Examples include a nano-drum [191], a silicon 
nanobeam [192], a membrane [193], a whispering gallery mode microresonators [194,195], 
a membrane where both coherent light and squeezed microwave fields are used for cooling 
[196], and a millimeter sized membrane that also acts as a photonic crystal [197].  
 
Operating in the quantum regime with free or levitated particles allows the generation of 
macroscopic quantum states that are less coupled to their environment than clamped 
systems, which greatly enhances the coherence time of the quantum states [198]. A 
macroscopic quantum state is created by cooling the center of mass (c.o.m.) motion of the 
nanosphere at trapping frequency provided by an optical tweezer, optomechanical cavity, 
ion trap or magnetic field [199], where the ground state condition requires the average 
phonon occupancy to be less than 1 at this trapping frequency. Typical c.o.m. oscillation 
frequencies of levitated nanoparticles range from 10-200 kHz while the mass varies from 10-

19 kg to 10-16 kg [200,198]. To understand the feasibility of performing measurements with a 
quantum nanoparticle, we consider its positional spread. This grows approximately linearly 
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in time when the particle is released from the levitating potential. Considering typical 
parameters for a levitated nanoparticle of mass m = 10-18 kg and Ω"= 2πx105 rad/s, this 
yields zero-point displacement fluctuations on the order of 𝜎%&' =10-11 m, requiring 
hundreds of seconds of expansion until the quantum position spread is as large as the 
particle with a radius of r = 35 nm, a reasonable definition of a macroscopic quantum state. 
In order to ascertain when the ground state condition has been reached, a narrow cavity 
resonance linewidth 𝜅	is preferred as it enables one to reach the resolved-sideband regime, 
assuming that the mechanical frequency Ω" is larger than 𝜅. This allows read-out of energy 
transfer between the optical and mechanical modes in an anti-Stokes/Stokes process [190]. 
The sideband asymmetry allows for measurement of the number of phonons and is 
considered a more accurate method of thermometry than read-out of the mechanical 
mode's power spectral density. Although a cavity is not necessarily required to reach the 
ground state, it provides resonant enhancement in read-out and interaction strength, 
thereby reducing the number of photons needed to interact with the mechanical oscillator 
and improving the signal to noise ratio [201]. 
 

 
Figure 2: Experimental results for cooling of macroscopic systems over the years. Minimum phonon occupation 
number is plotted against the date of publication. Blue data points represent experiments relying only on passive 
cavity cooling: JILA 2008, Vienna 2009, MPQ 2009, Cornell 2010, MIT 2011, EPFL 2011, Caltech 2011, Boulder 
2011, Florence 2019 and EPFL 2020. Red data points are results using squeezed light to surpass the standard 
quantum limit imposed on cavity cooling: JILA 2016 and Boulder 2017. Purple data points present results using 
a feedback cooling scheme: Copenhagen 2018 and Delft 2019. Orange data points show recent results of cooling 
levitated nanoparticles using coherent scattering in a cavity: ETH 2019 and Vienna 2020. Green data points 
show recent data of a nanoparticle feedback cooled in an optical tweezer using no cavity for cooling or read-
out purposes: Southampton 2017, ETH 2020, Tokyo '20, Vienna '20 and ETH '21. 
 
 
Ground-based quantum state preparation: A range of passive and active cooling methods to 
achieve quantum ground state preparation of macroscopic objects using the optomechanical 
coupling are described in multiple review papers [190, 198], with many techniques such as 
side-band resolved cooling derived from the cold atom community [202].  
 
• Cavity Cooling: In 2020, the c.o.m. motion of a 143nm diameter silica nanosphere 

levitated by an optical tweezers within an optical cavity was cooled to its zero-point 
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energy, which corresponds to an average phonon occupancy smaller than one, using the 
cavity optomechanical interaction together with a coherent scattering scheme [200]. 
This experimental set-up uses a technique called coherent scattering [203,204]. The 
tweezers reduce the chances of losing the particle when reaching ultra-high vacuum, as 
compared to direct trapping by the optical cavity field. The coupling strength is at its 
highest when the particle is held at the cavity node. The optical cavity is not pumped 
separately, rather the trapping optical tweezers' frequency is stabilized relative to the 
cavity resonance using a weak beam which minimally interacts with the nanoparticle.  
 
Light scattered out of the tweezers field by the nanosphere then bounces off the cavity 
mirrors and interacts coherently with the oscillator again. Pumping of the cavity using 
only light scattered by the nanoparticle is a key feature. Consequently, each photon 
populating the cavity mode interacts with the particle, increasing the optomechanical 
coupling rate. As a result, the quantum cooperativity of the experiment, namely the ratio 
of the optomechanical coupling strength and the product of the optical and mechanical 
decay rates, is well above 1000. To put this into perspective, a system with a quantum 
cooperativity bigger than 1 has been a long-pursued goal in levitated optomechanics 
and is the benchmark for entering the quantum backaction regime [198]. A high 
cooperativity is also known in cold-atom physics to produce a constant cooling rate for 
cavity assisted molecule cooling in dynamical potentials [202].  Compared to the general 
cavity cooling scheme [205], the estimated improvement in cooperativity is 105-fold 
[206] due to the coherent scattering procedure, with the added benefit of a reduced 
cavity drive power. 
 

• Feedback Cooling: At the end of 2020, the ground state cooling of the c.o.m. motion of 
a 143nm diameter levitated nanosphere using optimal control, was announced [207]. 
This type of cooling differs from the passive scheme employed in coherent scattering 
through the use of active feedback loops to generate the damping forces. A combination 
of an optical tweezers trap and a state-estimation feed-back algorithm is used, enabling 
cooling of the 105 kHz c.o.m. in one direction with a final average phonon occupancy of 
n = 0.56+/-0.02 quanta. Crucial for the success of this ground-state cooling scheme were 
the Heisenberg limited con-focal position detection and a combined implementation of 
a Kalman filter together with a linear-quadratic regulator [207,208] determining the 
optimal feedback output control. The optimized detection of the particle's motion in the 
back-scattering plane of the optical tweezers allows to follow the particle's position with 
an uncertainty that is 1.3 times the size of the zero-point motion fluctuation.  
 
Additionally, the identification of important external noise sources and 
photon/information loss mechanisms of the experimental setup enabled to provide a 
high confidence in the accurateness of the model parameters of the employed Kalman-
Bucy filter. Interestingly, the authors point out that the ground-state of a levitated 
particle can be reached even with a simple derivative filter using the correct gain settings 
[207]. Many quantum sensing proposals that utilize spin-coupling do not require the 
mechanical oscillator to be in the ground state. Instead, low phonon occupancy (n < 10) 
is sufficient as, even at this regime, the zero-point motion emerges as a sizable 
contribution to the dynamics.  
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• Velocity Damping: In 2020, this was shown using a 136nm diameter nanoparticle 

trapped only by an optical tweezers, and cooled using active velocity damping [201]. 
Also notable is the absence of a cavity which reduces the configuration overheads and 
allows for less obstructed measurements. For measurement protocols, it removes 
timing constraints posed by the response time of the cavity, possibly enabling faster 
pulse sequences and sampling rates. The c.o.m. mode was cooled to an average 
occupation of n = 4 phonons at frequency 50 kHz. A major benefit of this scheme is the 
use of backscattering to detect the oscillation along the cooling axis, which allows for 
cooling to the ground state provided that the laser noise on the detector is sufficiently 
low. 

 
Space Feasibility studies: The advantages of performing quantum optomechanics 
experiments in space is a reduction in ground-based noise sources such as seismic noise and 
changes to Earth's gravitational field. Vibrations, gravitational field-gradients, and 
decoherence through interaction with the environment fundamentally limit ground-based 
macroscopic quantum superpositions. This is particularly important for sensing, for example 
to eliminate the bulky and complex stabilization platforms required for gravitational wave 
detection. Furthermore, many fundamental tests of physics require a micro-gravity 
environment (<10-9 g), long free-fall times (100 s), and large number of repetitions (104) per 
measurement, which are more easily fulfilled with a space-based setup [209].  
 
• MAQRO/QPPF: Over the years, the mission scenario Macroscopic Quantum ResOnators 

(MAQRO) has been developed with this aims [210-221]. Some aspects, especially the 
thermal shielding and how cold one can get in space, were studied numerically in detail. 
A publication related to the debrief of the ESA CDF study on the MAQRO related 
Quantum Physics Payload Platform (QPPF) has been published in January 2019 [209]. 
The core levitated optomechanics experiment platform, along with all the mission 
design considerations, indicating the technology maturity and projects that have arisen 
to solve certain technological challenges. 

 
 
Space heritage: It is important for any new platform technology to consider legacy 
components and methods that are already present in space. For example, optomechanical 
experiments share very similar components to those on-board the ISS and LISA Pathfinder.  
 
• Optical tweezers already present on the ISS as part of the Light Microscopy Module 

[222], which was the first optical tweezers deployed in a microgravity environment with 
military specifications, are crucial building blocks for future space-based optomechanics 
missions.  
 

• The LISA Pathfinder mission established to be capable of handling large test-masses 
(cube of 46 mm size and 1.928 kg mass) in free-fall tests. The mission found excess noise 
at lower frequencies from forces acting on the surface of the spacecraft such as 
spontaneous out-gassing, virtual leak pressure effects, electrostatic noise from 
fluctuating small-scale surface charges [223], or other short-range forces [224]. 
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Additional effects characterized include mass depletion [225] and the generation of false 
acceleration due to electrostatic noise [223]. For optimum stability, LISA Pathfinder 
highlighted that noise from control voltages, electrostatic potentials, and laser intensity 
needs to be reduced such that it causes displacement changes no greater than fm s-2 
/Hz1/2  [227].  
In 2021 the LISA Pathfinder achieved an in-flight measurement, with background 
stabilization of 32x10-15 ms-2/Hz1/2 [224]. In previous tests, the reduction of the different 
noise sources enabled a stability measured at close to 1mHz of the LISA Pathfinder 
mission along the three axes as X: 5x10-15ms-2/Hz1/2, Y and Z: 4x10-14ms-2/Hz1/2, while the 
angular acceleration noises are respectively 3x10-12rads-2/Hz1/2 and 3x10-13rads-2/Hz1/2 
[227].  
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CONCLUSIONS 

Deliverable 3.2 report is summarizing the state of play on testing the different experimental 
QT platforms on their technological readiness level for space missions. In general, two types 
of scenarios exist for space missions, those which traditionally involved long-term planning 
and testing and eventually ending in large-scale and expensive missions, but also those which 
are more recent and make use of micro-satellite capabilities to test QT on a faster tune-
around, inevitably with a larger risk.  

Impressive progress has been made to demonstrate the maturity for both of those 
approached, long-term and short-term. The different experimental platforms, cold atoms & 
atomic clocks, photonic systems and large-mass systems have reached different level of 
technical maturity and attention by society. Strong QTSpace communities have been formed 
and are pushing ahead to ever more challenging objectives, to the great benefit of national 
and international industry and society.   

Naturally, the D3.2 is the longest report, as it summarizes in some detail all those efforts. 
Atomic clocks are well established and mature in space, pushing for implementing ever 
higher sensitivity and time resolution. One focus here is the test of predictions by the theory 
of General Relativity on the fundamental physics side, while of course the main application 
is in the timing and communication sector. Photonic systems, with successful QKD satellite 
missions and many more to come, have seen great attention by the security and 
communication sector, while also here there is great scope to test Quantum Mechanics at 
truly galactic scales. Cold atoms in the concrete case of atom interferometers have seen a 
multitude of demonstrators of space-readiness levels in micro-gravity environments on 
ground and in space, mostly supported by national space agencies. Clearly, this community 
is now preparing for large-scale missions for both the addressing of Fundamental Physics 
questions and applications such as Earth Observations. Last not least, large-mass 
optomechanical systems have made super-fast progress on ground, have become a true 
quantum technology, and especially levitated optomechanical systems are of high potential 
for space applications in the sensing area. One concentrated effort to use large-mass 
interferometry to test Quantum Mechanics in space is pushing ahead, and very well on ESA’s 
radar. 
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